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Abstract. Dalitz decays of ω and ρ mesons, ω → π0γ∗ → π0e+e− and ρ0 → π0γ∗ → π0e+e−, produced
in pp collisions are calculated within a covariant effective meson-nucleon theory. We argue that the ω
transition form factor Fω→π0γ∗ is experimentally accessible in a fairly model-independent way in the

reaction pp→ ppπ0e+e− for invariant masses of the π0e+e− subsystem near the ω pole. Numerical results
are presented for the intermediate-energy kinematics of envisaged HADES experiments.

PACS. 13.60.Le Meson production – 13.75.-n Hadron-induced low- and intermediate-energy reactions and
scattering (energy ≤ 10 GeV) – 13.85.Lg Total cross-sections – 25.40.-h Nucleon-induced reactions

1 Introduction

The investigation of vector meson production in nucleon-
nucleon (NN) reactions represents an interesting topic
with various implications. For instance, it is known that
the effective repulsive NN forces at short distances can
be described, within a boson exchange model, by the ex-
change of ρ and ω mesons so that a study of their con-
tribution to the NN elastic amplitude and to the me-
son exchange currents in elastic scattering processes off
light nuclei can substantially augment the knowledge of
the short-range part of the NN potential. Another impor-
tant issue of vector meson production in NN collisions is
related to electromagnetic probes of strongly interacting
systems. As vector mesons carry the JP = 1− quantum
numbers as the photon, they couple directly to real and
virtual photons. The latter ones can be converted into
di-electrons in an s-channel process, such allowing a di-
rect access to the spectral distribution of the parent vec-
tor meson, even when embedded in strongly interacting
matter. (The strong decay channel products would suf-
fer from final-state interaction with the ambient medium.
Thus, the di-electron channel serves as direct or penetrat-
ing probe [1].)

Furthermore, the decay ω → π0γ was recently exper-
imentally studied in photo-excitation of nuclei [2]. The
difference of the strength distribution of the parent ω for
different target nuclei has been ascribed to a medium mod-
ification [3]. Such medium modifications are of particular
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importance for understanding the electromagnetic emis-
sivities of highly excited, strongly interacting systems,
e.g., created in the course of relativistic heavy-ion colli-
sions. An extreme option is that the resonances, including
the ρ and ω mesons, are molten once the deconfinement
and chirally restored phase is entered [4].

Another aspect is to supply information on production
of vector mesons in nucleon-nucleon reactions with similar
quantum numbers but rather different quark content, such
as ω and φ mesons [5–8], which is interesting with respect
to the Okubo-Zweig-Iizuka rule [9] and hidden strangeness
in the nucleon.

A particularly interesting subject is the decay of a vec-
tor meson. Besides the above-mentioned direct di-electron
decay, V → e+e−, where V stands generically for a vector
meson, valuable information on the half-off-mass shell de-
cay vertex V → πγ∗ → πe+e− and related transition form
factors (FFs) can be obtained. The functional dependence
of FFs upon the momentum transfer encodes general char-
acteristics of hadrons, such as charge and magnetic distri-
butions, size etc. The mentioned ω transition FF is related
to the ratio of matrix elements 〈ω|π0γ∗〉/〈ω|π0γ〉.

FFs are also known as important objects for studying
bound states within non-perturbative QCD. Theoretical
tools for exclusive processes within non-perturbative QCD
are approaches based on light cone sum rules and on the
factorization theorem (see [10–14] and references therein).

In deep-inelastic scattering processes, an investigation
of FFs in a large interval of momentum transfer, includ-
ing the time-like region, serves as an important tool to
provide additional information about the various QCD
regimes and on the interplay between soft and hard contri-
butions. For instance, it has been found that the soft part
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Fig. 1. Left part: Dalitz decay of a vector meson with energy
squared sV into a pion (π) and a di-electron (l1, l2). Right part:
the transition form factor is normalized at the photon point,
i.e., |FV π0γ∗(sγ∗ = 0)| = 1.

can be treated as a contribution of configurations in the
Fock space with a minimal number of quark constituents.
This can be considered as a justification for approaches
based on the relativistic quark constituent model for a co-
variant treatment of mesons as two-particle bound states
(see refs. [15,16] for the details of the covariant description
of mesons within Bethe-Salpeter–like approaches); corre-
spondingly computed FFs serve as tests of models [15–20].

Besides the mentioned QCD-motivated approaches
there is a number of more phenomenological models, e.g.,
based on the dispersion relation technique [19,21], or on
the use of vector meson dominance (VMD) models [22–
24] or with effective SU(3) chiral Lagrangians with the
inclusion of the non-Abelian anomaly [24–26].

Traditionally, the electromagnetic FFs are studied by
electron scattering off stable particles which provides in-
formation in the space-like region of momenta where, as
well known, the experimental data can be peerless param-
eterized by dipole formulae. This in turn means that in
the unphysical region, i.e., for kinematics unreachable by
experiments with on-mass shell particles, the analytically
continued FFs exhibit a pole structure. Intensively studied
FFs are the ones of the pseudoscalar mesons, chiefly the
pion. Light vector meson FFs have received less attention
since their experimental determination is more difficult.
However, new detector installations, like the spectrometer
HADES [27], can detect di-electrons production in proton-
proton (pp) collisions in a wide kinematical range of in-
variant masses with a high efficiency. Thus, a precision
study of the transition FF for the ω → π0e+e− process
becomes feasible.

The process of vector meson Dalitz decay can be pre-
sented as (see fig. 1)

V → P + γ∗ → P + e− + e+ , (1.1)

where P denotes a pseudoscalar meson. Obviously, the
probability of emitting a virtual photon is governed by
the dynamical electromagnetic structure of the “dressed”
transition vertex V → P which is encoded in the transi-
tion FFs. If the particles V and P were point like, then
calculations of mass distributions and decay widths would
be straightforward along the standard quantum electro-
dynamics (QED) technique. Deviations of the measured
quantities from the QED predictions directly reflect the
effects of the FFs and thus the internal hadron structure,

and, consequently, can serve as experimental tests to dis-
criminate the different theoretical approaches.

First experimental measurements of the ω transition
FF [28–31] have pointed to a discrepancy with theoretical
pre(post)dictions [15,21,25] in the time-like region. Calcu-
lations based on VMD do not satisfactorily describe the
data. A better description can be achieved with dispersion
relation calculations [21] or within models based on the
Dyson-Schwinger equation [15]. All these approaches pro-
vide rather different transition FFs, with the difference in-
creasing with the momentum transfer. However, the avail-
able experimental data is still too scarce for a preferable
choice of the approach, and additional data is needed. In
this context, forthcoming data from the HADES Collab-
oration at the heavy-ion synchrotron SIS18/GSI Darm-
stadt [27] will substantially contribute to our understand-
ing of the problem.

HADES is a detector installation optimized for stud-
ies of processes with a e+e− pair in one of the final states
in reactions of hadrons (p, π) and various nuclei, i.e., pp,
πp, Dp, pA, πA, AA etc. near the ρ, ω and φ thresholds.
In the present paper we study the di-electron production
from Dalitz decay of the lightest vector mesons in pp re-
actions at beam energies of a few GeV for kinematical
conditions corresponding to the HADES setup. Our focus
is to investigate the transition FF ω → π0e+e−. To this
end, we calculate the dependence of the differential cross-
section for the reaction pp→ ppπ0e+e− upon the invariant
mass of the subsystem π0e+e− around the pole masses of
ρ and ω mesons and find a kinematical range where the
contribution of ρ is sufficiently small and the cross-section
is dominated by Dalitz decays of ω mesons. We calculate
the double differential cross-section averaged in a suitable
kinematical range as a function of the di-electron invari-
ant mass and argue that such a quantity, normalized to
the real photon point and supplemented by some specific
kinematical factor, represents the desired transition FF.
In such a way a direct experimental investigation of the ω
transition FF is feasible.

Our paper is organized as follows. In sect. 2 we in-
troduce the ω → π0γ∗ transition form factor. Section 3
is devoted to the theoretical background for dealing with
the reactions pp → ppω → ppπ0e+e− and pp → ppρ →
ppπ0e+e−. Our approach is essentially based on the effec-
tive model [5,6] successfully employed in describing the
vector (V ) meson production in NN → NNV reactions.
The model is based on a phenomenological meson-nucleon
theory with parameters adjusted to experiments. Numer-
ical results are presented in sect. 4. The conclusions are
summarized in sect. 5, and some formal relations for an
integration procedure are relegated to the appendix.

2 The transition form factor

Consider the process of a Dalitz decay of a vector me-
son into a pion and a virtual photon (di-electron) of the
type (1.1). The effective Lagrangian describing the vertex
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Fig. 2. Diagrams for the calculation of the transition form factor Fωπ0γ∗(sγ∗) within the VMD model. Diagrams in a) correspond
to the current-field identity (2.5), while diagram b) is the Dalitz decay within the VMD model.

V → π0γ reads [20,23,24]

LV π0γ = fV π0γ

(

εµναβ∂
µAν∂αΦβV

)

Φ0
π , (2.1)

where Aν is the electromagnetic four-potential, ΦV de-
notes the neutral vector meson fields ω or ρ, respectively,
Φ0
π stands for the π0 part of the isovector Φπ pion field,

and fV π0γ is the corresponding coupling constant. The
fully antisymmetric Levi-Civita symbol εµναβ is chosen in
the standard representation where ε0123 = −1. The decay
width is calculated from (2.1) as

ΓV→π0γ =
1

12π

(

λ(sV , 0, µ
2
π)

4sV

)3/2

f2
V π0 γ (2.2)

and serves for a determination of the coupling constant
fV π0 γ from experimental data. λ is the kinematical trian-
gle function, λ(x, y, z) = (x−(√y−√z)2)(x−(√y+√z)2)
and the square of the π0γ invariant mass is denoted by sV .
Experimentally, the branching ratios Γi/Γtot for ω → π0γ
and ρ→ π0γ are known, being (8.9+0.27

−0.23) ·10−2 and (6.1±
0.8) · 10−4 [32]. Equation (2.2) yields fωπ0γ ' 0.72GeV−1

and fρπ0γ ' 0.25GeV−1 for the known total widths
Γω = (8.49± 0.08)MeV and Γρ = (146.5± 1.5)MeV. The
signs of the coupling constants have been chosen positively
in agreement with SU(3) symmetry and QCD sum rules
(see [22,33]). For the reaction (1.1), however, the emitted
photon is virtual and, consequently, the Lagrangian (2.1)
must be supplemented by a corresponding transition FF
V → P

fV π0γ(0)→ fV π0γ(sγ∗) = fV π0γ(0)FV π0γ∗(sγ∗), (2.3)

where sγ∗ is the di-electron invariant mass squared. This
equation defines the transition FF FV π0γ∗(sγ∗). Direct cal-
culation of the diagram in fig. 1 with the Lagrangian (2.1)
results in

dΓω→π0e+e−

dsγ∗
=

αem
3πsγ∗

λ3/2(sV , sγ∗ , µ
2
π)

λ3/2(sV , 0, µ2
π)

Γω→π0γ

∣

∣Fωπ0γ∗(sγ∗)
∣

∣

2
, (2.4)

where the part αem
3πsγ∗

λ3/2(sV ,sγ∗ ,µ
2
π)

λ3/2(sV ,0,µ2
π)

Γω→π0γ refers

to a point-like particle. The mass distribution

dΓω→π0e+e−/dsγ∗ is determined by i) a purely kine-
matical (calculable) factor, ii) the decay vertex into a
real photon (known from experimental data) and iii) the
(yet poorly known) transition FF Fωπ0γ∗(sγ∗). Hence,
eq. (2.4) suggests that by measuring the invariant mass
distribution one can get direct experimental access to the
ω transition FF [28–31].

As mentioned above, the transition FFs are important
objects of theoretical calculations for tests and discrimi-
nation among the multitude of approaches. The simplest
and quite successful theoretical description of FFs can be
performed [22,24,25] within the VMD conjecture, and a
reasonably good description of elastic FFs in the time-like
region has been accomplished. By using the current-field
identity [24]

Jµ = −e
M2

ρ

fγρ
Φµρ0 − e

M2
ω

fγω
Φµω (2.5)

with the coupling constants fγρ and fγω known [34,
35] from experimentally measured electromagnetic decay
widths, one can also compute the transition form factor
FVMD
ωπ0γ∗(sγ∗) by evaluating the corresponding Feynman di-

agrams (see fig. 2). Contrarily to the elastic case, the FF
computed within such an approach exhibits disagreement
with data (see below). This immediately implies that with
only one (local) FF it is not possible to satisfactorily de-
scribe [25,35] the transition vertex, and the simple ρ/ω
dominance model must be, at least phenomenologically,
supplemented with heavier mesons to modify appropri-
ately the shape of the transition vertex [22].

3 The reaction pp → ppπ0e+e−

Consider now the di-electron (e+e−) production in the
exclusive reaction

N1 +N2 → N ′1 +N ′2 + π0 + e+ + e− (3.1)

for which the process (1.1) enters as a subreaction. The
invariant cross-section is

d11σ =
1

2
√

λ(s,m2,m2)

1

(2π)11
1

4

×
∑

spins

|T (P ′1, P ′2, k1, k2, kπ, spins)|2 d11τf
1

n!
, (3.2)
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Fig. 3. Illustration of the choice of the independent variables
for the process NN → NN + π+ e+e− within the duplication
kinematics [36]. The invariant mass squared of two final nucle-
ons is s12, while the invariant mass of the subsystem πe+e− is
sV . The diagram depicted in left part of fig. 1 enters here as a
subprocess.

where the factor 1/n! accounts for n identical particles
in the final state, |T |2 denotes the invariant amplitude
squared, and the invariant phase volume dτf is

d11τf = ds12dsV dsγ∗ R2(P1 + P2 → PV + P12)

×R2(P12 → P ′1 + P ′2)R2(PV → kπ + Pγ)

×R2(Pγ → k1 + k2) (3.3)

with the two-body invariant phase space volume R2 de-
fined as

R2(a+ b→ c+ d) = d4Pc d4Pd δ
(4) (Pa + Pb − Pc − Pd)

×δ
(

P 2
c −m2

c

)

δ
(

P 2
d −m2

d

)

, (3.4)

where P1, P2 and P ′1, P
′
2, k1, k2, kπ are the four-momenta

of the initial and final particles, respectively; m denotes
the nucleon mass, while the electron mass can be neglected
for the present kinematics. The invariant mass of two par-
ticles is hereafter denoted as s. The invariant phase volume
dτf in (3.3) has been chosen within the so-called “duplica-
tion” kinematics [36], i.e. the one which exploits invariant
two-dimensional phase volumes R2 describing (kinemati-
cally) the decay of a real or virtual particle with the in-
variant mass squared s into two particles, which can also
be either real or virtual. This kinematics is schematically
depicted in fig. 3.

The invariant amplitude T is evaluated here within a
phenomenological meson nucleon theory based on effective
interaction Lagrangians which include scalar (σ), pseu-
doscalar (π), and neutral (ω) and charged/neutral vector
(ρ) mesons (see [5–7,37–39])

LNNσ=gσN̄NΦσ , (3.5)

LNNπ=−
fNNπ

mπ
N̄γ5γ

µ∂µ(τΦπ)N, (3.6)

LNNρ=−gNNρ

(

N̄γµτNΦρ
µ− κρ

2m
N̄σµντN∂νΦρ

µ
)

, (3.7)

LNNω=−gNNω

(

N̄γµNΦµω −
κω
2m

N̄σµνN∂νΦµω

)

, (3.8)

Lρπω=gρπω εµναβ ∂
µΦνω Tr

(

∂αΦβρΦπ
)

, (3.9)

where N and Φ denote the nucleon and meson fields, re-
spectively, and boldface letters stand for isovectors. All

couplings with off-mass shell particles are dressed by
monopole form factors FM = (Λ2

M − µ2
M )/(Λ2

M − k2
M ),

where k2
M is the four-momentum of a virtual particle with

mass µM . At kinetic energies near ρ, ω thresholds, contri-
butions from heavier mesons (φ, a1, . . .) can be neglected,
and we consider first only the Dalitz decays of ρ and ω
mesons.

The Lagrangians (3.5)–(3.9) generate two classes
of Feynman diagrams: i) the ones which describe the
Dalitz decay of a vector meson created from nucleon
bremsstrahlung due to NN interaction (via a one-boson
exchange potential), see fig. 4a, and ii) Dalitz decay of a
vector meson, ω or ρ, from a conversion of virtual π and ρ
(or π and ω) exchange bosons into an intermediate vector
meson, i.e., from the internal ρπω vertex, see fig. 4b. The
result of a calculation of these diagrams can be cast in the
form of a current-current interaction

T = Jα(12→ 1′2′V )





gαβ − PαV P
β
V

P 2
V

P 2
V −MV

e fV π0γ

P 2
γ





×
(

εµνββ′P
µ
γ∗P

β′

V jν±

)

, (3.10)

where jν± = ū(k1)γ
µv(k2) is the electromagnetic current

of the final lepton pair, and Jα(12→ 1′2′V ) stands for the
current corresponding to the vector meson production in
the NN interaction, i.e., the Feynman diagrams NN →
NNV [5] with the vector meson lines truncated (cf. fig. 4).

The amplitude T consists of two parts: one (Jα(12 →
1′2′V )) describing the production of vector mesons, and

the other one (εµνββ′P
µ
γ∗P

β′

V jν±) being proportional to the
amplitude of Dalitz decays of the produced mesons. This
prominent feature of the amplitude allows to substantially
simplify the expression for the cross-section. In the square
of the amplitude one can separate groups of terms which
depend only on a part of variables (connected with decay
vertices), and correspondingly the multidimensional inte-
gral (3.2) can be partially factorized. Note that the de-

cay part (εµνββ′P
µ
γ P

β′

V jν±) can also be written in the form
of a current-current interaction J(β)ν(V → γπ)jν±. Note
also that all these currents are conserved, i.e. PµJ

µ = 0.
These circumstances allow one to reduce the dimension of
the integral (3.2) by carrying out some of the integrations
analytically. For instance, the summation in the square
of the amplitude over the di-electron spins results in a
quantity (known as the leptonic electromagnetic tensor,
see below) which solely contains the whole dependence
upon the momenta of the di-electron. This means that
the corresponding integral over R2(γ → l1 + l2) can be
evaluated independently of other integrations. Moreover,
since P 2

γ∗ > 0 is time like, one can perform the integration
in the system where the virtual photon is at rest [37] and
where the integration is particularly simple: R2 = dΩ∗

k
/8

and the time components of lµν vanish. For the leptonic
tensor

lµν = 4
[

kµ1P
ν
γ∗ + kν1P

µ
γ∗ − 2kµ1 k

ν
1 −

sγ∗

2
gµν
]

(3.11)
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one has

∫

lµν(k1, k2, Pγ∗) dΩ
∗

k
=

16π

3
sγ∗

(

−gµν +
Pµ
γ∗P

ν
γ∗

sγ∗

)

.

(3.12)
In a completely analogous way one can integrate over

the phase volume R2(V → πγ) (see appendix A). The
result is

dσ

dsγ∗dsV
=

1/n!

2
√

s0(s0 − 4m2)

1

(2π)11
1

4

×
∑

nucl.
spins

∫

|M|2d5τ(s12, PV , P
′

1, P
′

2), (3.13)

|M|2≡
∫

∑

spins±

|A|2R2(PV →Pγ∗+kπ) R2(Pγ∗→k1+k2)

=
αem
36
|fV πγ |2

(2π)3

sV sγ∗
λ

3
2 (sV , sγ∗ , µ

2
π)

×Jα(NN → NNV )





−gαβ +
PαV P

β
V

P 2
V

P 2
V −M2

V





×J+
β (NN → NNV ), (3.14)

where the phase volume corresponding to the process of
pure vector mesons production in theNN interaction, and
ds12R2(P1+P2 → PV +P12)R2(P12 → P ′1+P

′
2) is denoted

as d5τ(s12, PV , P
′
1, P

′
2). In principle, since Pα

V Jα = 0, the

term proportional to
PαV P

β
V

P 2
V

can be omitted. We keep it for

further convenience for the interpretation of the results.

4 Results

Expressions (3.14) and (3.13) determine the cross-section
for di-electron production within the effective meson nu-
cleon theory. In our calculations of the nucleonic current
Jα(NN → NNV ) we use the explicit expressions for the
conversion and bremsstrahlung diagrams quoted in ref. [5].
As mentioned above, the Dalitz decay of the ρ meson
also contributes as interference effect, so that the current

Jα(NN → NNV ) and, consequently, the total amplitude
T is a sum of two terms. Since both ρ and ω are not
stable the corresponding masses receive imaginary parts,
i.e., MV → MV − iMV ΓV /2, where ΓV is the total de-
cay width of the respective vector meson. The ρ meson
decays mainly into two pions. Consequently, its width, as
a function of the invariant mass sV is given by

Γρ(sV ) = Γρ
(

M2
ρ

)M2
ρ

sV





√

sV − 4µ2
π

√

M2
ρ − 4µ2

π





3

, (4.1)

where Γρ(sV = M2
ρ ) ≈ 0.15GeV. The width of the ω me-

son has been kept constant Γω ≈ 0.009GeV in the present
calculations. Other effective constants entering into the
Lagrangians (cut-off form factors, coupling constants, me-
son masses) have been taken from ref. [5]. The final-state
interaction (FSI) among the nucleons has been calculated
within the Jost function formalism [40] which reproduces
the singlet and triplet phase shifts at low energies. We
employ the same formalism as in [38]. In principle, the
nearly on-mass shell ω and ρ mesons in the intermediate
states can also interact with the nucleons. The magnitude
of such corrections has been estimated in ref. [41] by a
simulation of rescattering vector mesons off nucleons. The
result is that FSI effects from the ω meson rescattering
are small. Consequently, due to the finite life time of the
ω meson, the reaction product from the Dalitz decay, the
pion, is separated in time-space from the nucleons, and
effects of πN rescattering in the final state have not been
included.

Figure 9 in [42] demonstrates that our model describes
fairly precisely the data for the reaction NN → NNω
at excess energies 10–300MeV. The data for the reaction
pp → ppρ are scarce near threshold, cf. [43]. The appli-
cation of the present setup (see also [37]) delivers 27.5
(30.8)µb at an excess energy of 300 (330)MeV which com-
pares well with 23.4 ± 0.8 ± 8µb at an excess energy of
330MeV [43]. At such excess energy the ρ cross-section
is about 2.5 times smaller than the ω cross-section. This
can be understood as a result of the interchange of cou-
pling strengths (gNNρ, κρ) and (gNNω, κω) in meson and
nucleon currents.
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Fig. 5. Differential cross-section dσ/dsV for the reaction pp→
pp + π + e+e− for the kinetic beam energy Tbeam = 2.2GeV.

s
1/2
V is the invariant mass of the subsystem πe+e−. Dashed
and double-dot–dashed lines are contributions from decay of
ω and ρ mesons, respectively, while the solid line is the total
distribution with interference effects. The transition form fac-
tors (4.5), entering as input into the calculations, have been
computed within the VMD model (see fig. 2).

Results of calculations of the mass distribution dσ/dsV
are presented in figs. 5 and 6 in linear and log scales,
respectively. We have chosen as kinetic beam energy
Tbeam = 2.2GeV, similar to the HADES proposal [27].
The dashed line is the contribution from Dalitz decay of
ω mesons ω → π0e+e−, the double-dot–dashed line is the
corresponding ρ meson contribution, and the solid curve
is the total cross-section, including interference effects as
well. It can be seen that in the very vicinity of the ω pole
the contribution from ρ mesons is fairly small. This is an
understandable result, since the branching ratio for the
Dalitz decay of ρ meson is much smaller than that for the
ω meson [32]. However, as seen from fig. 6, outside the
ω pole mass the interference effects are rather significant.
Note that in the direct di-electron bremsstrahlung (two-
body channel decay of vector mesons) the contribution of
ρ can be competitive with that of ω [37].

The obtained results in figs. 5 and 6 persuade us that
for the invariant mass of the πe+e− subsystem close to the
ω pole mass, the contribution from ρ can be disregarded.
This also implies that in the double differential cross-
section there is a suitable interval in the vector meson
mass sV in which the contribution from ρ can be neglected.

In fig. 7, results of calculations of the double differ-
ential cross-section dσ/dsV dsγ∗ are presented as a func-
tion of the invariant mass squared of the di-electron, sγ∗ ,
in a narrow bin covering the ω meson pole, i.e. at mass
sV ∼ M2

ω. It can be seen that in the whole kinemati-
cal range of the di-electron invariant mass the double dif-

Fig. 6. The same as in fig. 5 but in a log scale. Left to the ω
peak the contribution of the ρ meson manifests itself as inter-
ference effect.

Fig. 7. The double differential cross-section dσ/dsV dsγ∗ in the

vicinity of the ω pole mass s
1/2
ω = 0.782GeV as a function of

the di-electron invariant mass squared sγ∗ . The interval for the
ω mass has been chosen with respect to the envisaged HADES
resolution ∼ 3.5% [27].

ferential cross-section dσ/dsV dsγ∗ displays a narrow pro-
nounced peak, which is governed by contributions from
Dalitz decays of ω mesons. This means that by select-
ing events with invariant masses sV of the e+e−π system
in this interval and varying the invariant mass sγ∗ of di-
electrons, one can experimentally study the process (1.1)
in pp collisions. Let us recall in this context the studies [34,
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44], where for the exclusive reaction πN → Ne+e− the
quantum interference of intermediate ρ and ω mesons has
been analyzed. In certain kinematical regions this interfer-
ence is fairly severe and may hamper a clear distinction of
ρ → e+e− and ω → e+e− contributions. In this respect,
our calculations support a good prospect to isolate the
ω → πe+e− subreaction vs. the ρ → πe+e− part in the
exclusive reaction pp → ppπ0e+e−. For a further discus-
sion of interference effects see below.

Let us now focus on the part of the diagrams describing
the Dalitz decay of the produced vector mesons in the
vicinity of the invariant mass sV = sω. If the contribution
from only one vector meson (e.g., the ω meson) is taken
into account then, as seen from eqs. (3.14) and (3.13), the
cross-section can be presented in the factorized form

d2σ

dsγ∗dsV
=

√
sV /π

(sV −M2
V )

2

×
∫

d5σtot(NN → NNV )
dΓ (V → π0e+e−)

dsV
, (4.2)

where

d5σtot(NN → NNV ) =
1

2
√

λ(s0,m2,m2)

1

(2π)5
1

4

×
∑

nucl.
spins

∑

λV

|(JξλV )|2d5τ(s12, PV , P
′

1, P
′

2) (4.3)

is exactly the total cross-section of real vector meson pro-
duction in NN reactions [5,37]. In eq. (4.3) we formally
introduced a polarization vector ξλV which corresponds

to a real vector meson V with mass sV ,
∑

λV
ξαλV ξ

+β
λV

=

−gαβ+ PαV P
β
V

P 2
V

. Note that eqs. (4.2) and (4.3) can be easily

generalized for contributions from few mesons: in such a
case, the cross-section will consist on a sum of two-step–
like cross-sections (4.2), corresponding to each meson, and
interference terms. In the mentioned kinematical bin our
cross-section coincides with the one obtained within a two-
step mechanism with one isolated meson. However, outside
this kinematical region this is not longer the case, since,
apart from interference effects, even the cross-section (4.3)
is not anymore an experimentally well-defined quantity,
but rather describes the production of a (deeply) virtual
vector meson V (see discussion in [37]).

From (2.4), (4.2) and (4.3) it can be seen that the
dependence upon the kinematical variables of the subpro-
cesses NN → NNV and ω → π0e+e− can be, in prin-
ciple, separated in a model-independent way by perform-
ing measurements of the double differential cross-section
d2σ/dsγ∗dsV keeping the invariant mass sV constant and
varying the di-electron mass sγ∗ . In such a way one can ex-
tract the transition FF in the same manner as in [28–31]:
Define the quantity

|F (sγ∗)|2 =

sγ∗

smin

λ3/2(sω, smin, µ
2
π)

λ3/2(sω, sγ∗ , µ2
π)

〈d2σ/dsγ∗dsV 〉
〈d2σ/dsγ∗dsV 〉|sγ∗=smin

, (4.4)

Fig. 8. The ratio (4.4) calculated at Tbeam = 2.2GeV with two
different transition form factors: the dashed line corresponds
to the VMD model (4.5), while the solid line is for the dipole
formula (4.6). The averaging in (4.4) has been performed in
the ±3.5% vicinity of the ω pole mass. Experimental data are
from ref. [28].

where 〈. . .〉 denotes an average about the ω pole mass
corresponding to the experimental mass resolution (say,
3.5% as envisaged for forthcoming measurements at
HADES [27]), and smin = 4m2

e is the minimum value of
the di-electron mass which plays a role of a normaliza-
tion point. Then, as seen from eqs. (2.4) and (4.2), in the
kinematical range, where the contribution of Dalitz de-
cays of ρ mesons and interference corrections are negligi-
ble, the quantity F (sγ∗) defined in (4.4) represents indeed
the wanted transition FF Fωπ0γ∗ fairly well.

In fig. 8 the results of calculations of the FF extracted
via eq. (4.4) from differential cross-sections are presented
for two different choices of parameterizations entering
eq. (3.14) with (2.3). The dashed line is the extracted FF
with a VMD parametrization for both ρ and ω mesons,

FVMD
ωπ0γ∗(sγ∗) = −

M2
ρ

sγ∗ − (Mρ − i
2Γρ)

2
,

FVMD
ρπ0γ∗(sγ∗) = −

M2
ω

sγ∗ − (Mω − i
2Γω)

2
, (4.5)

while the solid line is the result for a pole-like structure of
the ω meson FF

F pole
ω π0γ∗(sγ∗) =

(

1− sγ∗

(0.65GeV)2

)−1

. (4.6)

For orientation, the previous experimental data on the ω
meson transition FF, extracted from the reaction π−p→
ωn → nπ0µ+µ− at pion beam momenta of 25 and
33GeV/c [28–31] is also presented in fig. 8. A compari-
son of the extracted FFs with the corresponding inputs
shows that for the considered kinematical conditions they
differ by less than 0.5% which demonstrates that, if the
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cross-section is really dominated solely by resonant pro-
cesses with ω and ρ decays alone, the defined ratio (4.4)
can indeed serve as a convenient formula to extract the
FF from experimental data from pp collisions with high
accuracy.

However, actually for the processes of NN scattering
with a pion and a di-lepton in the final state, other, non-
Dalitz type, diagrams can contribute to the cross-section.
In the restricted region Mπ0e+e− ∼ Mω these diagrams
play a role of a smooth background and, in principle, can
obscure the procedure of extracting FFs by eq. (4.4). To
estimate some possible effects of the background one can
globally mimic it by one Feynman diagram with produc-
tion and decay of an effective heavy vector meson into
the considered final state with effective (freely adjustable)
constants. As seen from eqs. (3.13), (3.14) the structure
of the cross-section is

dσ

dsγ∗dsV
∼ −

∫

dΦ(sγ∗ , sV , s12, Pi)J
(NN→NNV )
µ

×
∣

∣

∣

∣

∣

M2
V

P 2
V −(MV − i

2ΓV )
2

∣

∣

∣

∣

∣

2

J+µ(NN→NNV ), (4.7)

where dΦ(sγ∗ , sV , s12, Pi) is a kinematical function pro-
portional to the phase space volume d5τ(s12, PV , P

′
1, P

′
2),

and MV and ΓV stand for the mass and width of the ef-
fective meson as well. Then it is clear that the resonance
structure is governed by the propagator of the ω meson,
whereas the sub-diagram NN → NNV provides a smooth
dependence of the cross-section up on sV . Correspond-
ingly, one can suppose that the background cross-section
has the same functional dependence on kinematical vari-
ables as the sub-diagram NN → NNV , i.e., it is the same

as J
(NN→NNV )
µ J+µ(NN→NNV ) with a non-resonant (con-

stant) propagator. As an easily trackable procedure we
put the mass of the effective particle MV →Mbkgr ÀMω

and adopt the background cross-section contribution (dis-
played here without interference terms) in the form

(

dσ

dsγ∗dsV

)(bkgr)

∼ −
∫

Φ̃(sγ∗ , sV , s12, Pi)

×J (bkgr)
µ J+µ(bkgr)d5τ , (4.8)

where J
(bkgr)
µ ∝ ±J (NN→NNω)

µ , and the function

Φ̃(sγ∗ , sV , s12, Pi) is chosen such that the background
at the ω pole is 10%, independent of sγ∗. This order
of magnitude can be estimated from available experi-

mental data [28]. Note that the current J
(bkgr)
µ , like-

wise the ω and ρ currents, must be transversal, i.e.,

J
(bkgr)
µ Pµ

V = 0, which implies that this quantity neces-

sarily depends on kinematical variables, say J
(bkgr)
µ =

J
(bkgr)
µ (sγ∗ , sV , s12, Pi). This means that this current

cannot be parameterized in an arbitrary form; at least

the condition J
(bkgr)
µ (sγ∗ , sV , s12, Pi) P

µ
V = 0 must be ful-

filled, as the above choice does. Actually, the amplitude
squared entering the cross-section consists of the coher-
ent sum of contributions of ρ and ω and the background

Fig. 9. The double differential cross-section dσ/dsV dsγ∗ as

a function of s
1/2
V in the vicinity of the ω pole for Tbeam =

2.2GeV with background contribution taken into account. The
relative sign between the resonant and background amplitudes
is chosen positively resulting in a constructive interference. The
dashed line corresponds to the resonant contributions of di-
agrams with ω and ρ Dalitz decays (cf. fig. 7), the dotted
line corresponds to the background contribution alone, and
the solid line is the resulting total cross-section. The employed
transition form factor is for the VMD model eq. (4.5). The top
(bottom) panel is for

√
sγ∗ = 2me → 0 (0.19)GeV.

J
(bkgr)
µ ∝ ±J (NN→NNω)

µ with constant proportionality
factor. The phase of the latter one is aimed at bracketing
more favorable situations where the background adds up
incoherently and may be subtracted in accessing the FF.

In figs. 9 and 10 the results of calculations of the cross-
section (3.13) with including the background (4.8) are
presented. In fig. 9 the relative sign of the background
current is chosen positive (the interference is almost ev-
erywhere constructive), whereas in fig. 10 the sign is neg-
ative (the interference is mainly destructive). The back-
ground (4.8) provides a smooth contribution to the reso-
nant cross-section; at ω peak it is about 10%, as dialed.
However, the interference effects are rather important here
and can result in corrections up to 55% at large sγ∗. Fig-
ures 9 and 10 also demonstrate that in case of a construc-
tive interference the resulting cross-section (solid lines) is
always larger than the cross-section without background
contributions (dashed lines), whereas in case of a destruc-
tive interference the corresponding cross-section is smaller
near the peak and larger outside. These circumstances are
rather important in the integrated cross-sections since in
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Fig. 10. The same as in fig. 9 but with a destructive interfer-
ence of resonant and background contributions.

the latter case the contribution of the background is par-
tially compensated in the integral so that the FF extracted
via eq. (4.4) can be quite different in the two cases. This
situation is illustrated in fig. 11, where the input FFs and
the extracted FFs are compared. One can conclude that
a constructive interference of the background may cause
some uncertainty in the procedure of the experimental de-
termination of the ω transition FF.

5 Summary

In summary, we have analyzed the di-electron produc-
tion from Dalitz decays of light vector mesons produced
in pp collisions at intermediate energies. The correspond-
ing cross-section has been calculated within an effective
meson-nucleon approach with parameters adjusted to de-
scribe the free vector meson production [5,6] in nucleon-
nucleon reactions near the threshold. A possible smooth
background contribution to the process has been evalu-
ated as well. Particular attention is paid to the problem
of whether it is possible to determine in such reactions
the vector meson transition form factors. We argue that
by studying the invariant mass distribution of the final
πe+e− subsystem as a function of the di-electron mass in
a narrow kinematical interval near the ω meson mass one
can directly measure the ω meson transition form factor
Fωπ0γ∗ in, e.g., pp collisions. Such experiments are envis-
aged at HADES and our results may serve as predictions
for these forthcoming experiments. The uncertainties of
a procedure to extract Fωπ0γ∗ depend upon the scale of

Fig. 11. The extracted FF (solid curves) by using the ra-
tio (4.4) calculated at Tbeam = 2.2GeV with inclusion of the
background contribution. Dashed lines correspond to the input
FF taken from the VMD model (4.5). The averaging has been
performed in the ±3.5% vicinity of the ω pole mass. Panels a)
and b) correspond to destructive and constructive interference
effects, respectively.

the background processes and are expected to be small if
the interference is destructive. Experimental information
on form factors is useful for testing QCD predictions of
hadronic quantities in the non-perturbative domain.

We thank H.W. Barz and A.I. Titov for useful discussions.
L.P.K. would like to thank for the warm hospitality in the
Research Center Rossendorf. This work has been supported by
BMBF grants 06DR121, 06DR135 and the Heisenberg-Landau
program.

Appendix A. Integration over decay vertices

The decay part (εµνββ′P
µ
γ∗P

β′

V jν±) in eq. (3.10) can be
written in the form of a current-current interaction,
J(β)ν(V → π0γ)jν±, where j

ν
± is the electromagnetic cur-

rent of the di-electron, and the decay current is J(β)ν ∼
εµνββ′P

µ
γ∗P

β′

V . In the square of the amplitude these cur-
rents form the corresponding electromagnetic (lνν′) and
decay (T(ββ′)νν′) tensors, respectively. Obviously, both
currents, jν± and J(β)ν , and consequently, both tensors
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are conserved:

P ν
γ lνν′ = P ν′

γ lνν′ = 0, P ν
V T(ββ′)νν′ = P ν′

V T(ββ′)νν′ = 0.
(A.1)

Consider now the integral over the di-electron phase vol-
ume. The electromagnetic tensor (3.11) depends only on
the momenta of the virtual photon and di electron, so
that the Lorentz structure, after integration over R2(γ →
e+e−), will be governed by only two terms: one propor-
tional to the metric tensor gνν′ and another one propor-
tional to P ν

γ∗P
ν′
γ∗ :

∫

lνν′(k1, k2, Pγ∗)R2(γ → e+e−) = a1g
νν′ + a2P

ν
γ∗P

ν′
γ∗ .

(A.2)
Equation (A.1) implies that a1 = −a2sγ∗ . Multiply-
ing (A.2) by gνν′, one gets

a2 = −1

3

∫

[(k1Pγ∗)− sγ∗ ] dΩ
∗

k
=

2π

3
, (A.3)

∫

lνν′(k1, k2, Pγ∗)R2(γ → e+e−) =

2π

3
sγ∗

(

−gνν′ +
P ν
γ∗P

ν′
γ∗

sγ∗

)

. (A.4)

Analogously, one has for the decay tensor T(ββ′)νν′
∫

εµναβεµ′να′β′P
µ
γ∗P

µ′
γ∗P

α
V P

α′
V R2(PV → kπ + Pγ∗) =

a1g
ββ′ + a2P

β
V P

β′
V (A.5)

with a1 = −a2sV and a1 = π
12sV

λ3/2(sV , µ
2
π, sγ∗) and

∫

εµναβεµ′να′β′P
µ
γ∗P

µ′
γ∗P

α
V P

α′
V R2(PV → kπ + Pγ∗) =

π

12sV
λ3/2(sV , µ

2
π, sγ∗)

(

−gββ′ + P β
V P

β′
V

sV

)

. (A.6)
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